An Auroral X-Ray Imaging Spectrometer

P.F. Mizera,* W.A. Kolasinski,† D.J. Gorney,‡ and J.L. Roeder‡

The Aerospace Corporation, Los Angeles, California

Abstract

SCANNING X-ray spectrometer was flown aboard the United States Air Force Defense Meteorological Satellite Program (DMSP-F6) satellite to image X-ray production in the Earth's atmosphere. One of the main objectives of this experiment was to image auroral signatures associated with electron precipitation at energies above a few keV. A brief description of the instrument is given and a sequence of auroral images is shown to demonstrate on-orbit performance and to illustrate the use of such data to monitor ionization density perturbations in the Earth's atmosphere.

Contents

The Special Sensor B/Aerospace (SSB/A), flown on the USAF-DMSP-F6 satellite, is a two-scanning head X-ray spectrometer designed to measure X rays in the energy range 1.8 to >100 keV emanating from the Earth's atmosphere. This instrument is a second generation X-ray spectrometer¹ capable of determining the X-ray energy spectrum of a source region 70×130 km (pixel size) from limb-to-limb of the Earth.

The SSB/A instrument was launched aboard the DMSP-F6 satellite on December 20, 1982 into a dusk-dawn sunsynchronous polar orbit at an altitude of 830 km. In addition to a primary visible imager designed to measure near-infrared wavelength emissions with a spatial resolution of a few km, other special sensors aboard included precipitating electron and ion electrostatic analyzers (SSJ/4) capable of measuring high-latitude auroral fluxes from 0.03 to 30 keV every second. With these instruments, auroral phenomena can be monitored over each polar region every 50 min. The visible imagery and the precipitating charged particle data are archived through the NOAA World Data Center and are available by subscription.

The SSB/A instrument is composed of five principal components: the high energy and low energy X-ray sensors, a hydrogen Lyman alpha sensor, background monitors, and the motor drives and programmer unit. All relevant information is sent through a data processing unit and telemetered to ground stations.

The mass of the instrument is 14.5 kg and consumes 9 W of power when fully operating. Among some of the unique features of the X-ray spectrometer are the two scanning heads which rotate across a 110-deg arc with opposite angular velocities. A complete limb-to-limb scan takes 10 s with a complete data readout each second.

The high energy X-ray scanning head contains 3 cadmium telluride semiconducting detectors approximately 1 cm $^2 \times 0.2$ cm thick, each with anticoincident scintillator shields. The field of view of each detector is 14 deg and symmetrical about the telescope axis. Three differential energy channels are obtained from thresholds set at 15, 30, 60, and 100 keV. The cadmium telluride detectors operate most efficiently below

Received May 15, 1984; synoptic received July 3, 1984. Copyright © American Institute of Aeronautics and Astronautics, Inc., 1985. All rights reserved. Full paper available from National Technical Information Service, Springfield, Va. 22151, by title, at the standard price (available on request).

*Staff Scientist. Particles and Fields Department. Associate Fellow AIAA.

†Staff Scientist.

‡Member of the Technical Staff, Particles and Fields Department.

~0°C, a temperature maintained by passive thermal control. The low energy X-ray scanning head contains a proportional gas counter with a three atmosphere mixture of Argon and Xenon with a CO₂ quench. The 0.01 cm thick beryllium windows set the low energy X-ray threshold at approximately 1.8 keV. The effective area of the detector is 3.7 cm² and the entrance collimator subtends a 5 deg (in track) by 10 deg

(cross-track) field of view (full width half maximum intensity).

Two methods are employed to reduce the background signals from the low energy sensor. A broom or bending magnet is mounted at the entrance collimator to prevent electrons from entering the collimator and producing local bremsstrahlung X rays. The second method employs the fast rise time of the proportional counter pulse in order to discriminate X rays from energetic penetrating charged particles. The result of these background suppression techniques is evident in the orbital data. For example, over the polar caps of the Earth the background rate is less than one count/s/channel and remains low even when the instrument views magnetic field lines that contain auroral electrons.

The major sources of background on orbit are: 1) energetic trapped electrons near the low latitude boundary of the aurora, and 2) auroral electrons impinging on a sun shield used for the prime visible imager. The energetic electrons produce X rays with energies up to a few hundred keV when they stop in the spacecraft structure. Although the proportional counter was shielded with a high atomic number material (tantalum, Z = 73), the energetic X-ray background is too intense in the radiation belts to make useful measurements. The second source of local X rays is due to a sun-shield umbrella structure that came into the field of view of the X-ray scanner approximately 20% of the time. When auroral electrons interact with the sun shield, they produce an X-ray background that is impossible to distinguish from X rays emanating from the Earth. Background from solar X rays is not significant except during severe solar flares.

Remote sensing of X rays, produced by auroral electrons precipitating into the Earth's atmosphere, has many applications. Some of these include the ability to predict radio wave propagation deficiencies by monitoring enhanced atmosphere ionization and the capability of producing high latitude electrical conductivity profiles for magnetospheric models under both sunlit and dark conditions.

Figure 1 shows a sequence of north polar X-ray images acquired by DMSP-F6 on January 16, 1983. The satellite crosses the dawn local time aurora at the bottom of each image and proceeds across the polar cap to the dusk sector. The sun is to the right. From an altitude of ~ 830 km, the image covers approximately 50% of the polar region above 70 deg latitude and approximately 35% above 60 deg latitude. The total X-ray fluence is presented in Fig. 1, although spectral information is available also.

The first polar crossing occurred near 11:57 Universal Time (UT) and is shown in the top left-hand corner of Fig. 1. The satellite crossed the center of Canada near 06 h local time. The auroral activity extended from Fort Churchill on Hudson Bay up to the northern border of the Northwest Territories. On the left side of the image, the aurora extended from the limit of observation at low latitude almost up to 80° north latitude at local midnight.

The next northern crossing almost paralleled the western border of Canada. The aurora, situated in the local midnight-

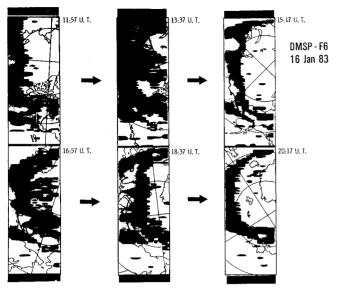


Fig. 1 Six northern polar X-ray images.

to-dawn local time sector, crosses the southern border of Alaska. Significant auroral activity is apparent even at the highest latitudes.

The third in this series of northern polar crossings passed through the center of Alaska in the dawn local time sector. The activity is confined to the auroral oval with a spatial width of ~ 200 km and little activity over the polar cap. The dusk aurora extends around to the Scandinavian countries.

Near 16:57 UT the satellite crossed the western Aleutian Islands at dawn and the auroral activity has moved to the north of Alaska and well onto the polar cap. The dusk activity

is weak and is located on the northern border of the Scandinavian countries. On the next northern polar orbit, the auroral activity intensifies near local midnight near the Kara Sea at the northern border of Russia.

The last image shows the aurora near 20:17 UT and illustrates how the global auroral activity had decreased. Weak activity encircles the northern border of Greenland.

Examples of X-ray images acquired by the SSB/A instrument aboard the DMSP-F6 satellite show it is possible to determine auroral boundaries with spatial resolution of ~100 km. Methods of inferring spectra of precipitating auroral electrons from the X-ray data provided by the SSB/A spectrometer have been developed.2 Apart from providing a measure of auroral activity in the form of energy input into the atmosphere, these spectra allow calculations of altitude density profiles of electrons in the ionosphere and the determination of ionospheric conductivities.² Remote sensing of the ionosphere has been used to compare the upper D and E profiles of the ionosphere inferred from X rays with those measured by ground-based radar measurements.³ Studies are currently underway to compare images of auroral X-ray production with cosmic noise absorption event data taken by riometers at the South Pole.

References

¹Mizera, P.F., Luhmann, J.G., Kolasinski, W.A., and Blake, J.B., "Correlated Observations of Auroral Arcs, Electrons and X-Rays from a DMSP Satellite," *Journal of Geophysical Research*, Vol. 83, Dec. 1978, p. 5573.

²Mizera, P.F. and Gorney, D.J., "Remote Sensing of the High Latitude Ionosphere," AIAA Paper 84-0376, Jan. 1984.

³Vondrak, R.R., Mizera, P.F. Gorney, D.J., and Robinson, S.M., "Simultaneous Chatanika Radar and DMSP-F2 X-Ray Measurements of the Atmospheric Effects of Auroral Electron Precipitation," submitted to *Journal of Geophysical Research*, 1985.

The news you've been waiting for...

Off the ground in January 1985...

Journal of Propulsion and Power

Editor-in-Chief Gordon C. Oates University of Washington

Vol. 1 (6 issues) 1985 ISSN 0748-4658 Approx. 96 pp./issue

Subscription rate: \$170 (\$174 for.)
AIAA members: \$24 (\$27 for.)

To order or to request a sample copy, write directly to AIAA, Marketing Department J, 1633 Broadway, New York, NY 10019. Subscription rate includes shipping.

"This journal indeed comes at the right time to foster new developments and technical interests across a broad front."

--E. Tom Curran.

Chief Scientist, Air Force Aero-Propulsion Laboratory

Created in response to *your* professional demands for a **comprehensive**, **central publication** for current information on aerospace propulsion and power, this new bimonthly journal will publish **original articles** on advances in research and applications of the science and technology in the field.

Each issue will cover such critical topics as:

- Combustion and combustion processes, including erosive burning, spray combustion, diffusion and premixed flames, turbulent combustion, and combustion instability
- Airbreathing propulsion and fuels
- Rocket propulsion and propellants
- Power generation and conversion for aerospace vehicles
- Electric and laser propulsion
- CAD/CAM applied to propulsion devices and systems
- Propulsion test facilities
- Design, development and operation of liquid, solid and hybrid rockets and their components